(%i1) "Einf. Determinante"$
(%i2) M1: matrix([1.0,0.0,1.0],[0.0,1.0,1.0],[0.0,0.0,1.0]);
[ 1.0 0.0 1.0 ]
[ ]
(%o2) [ 0.0 1.0 1.0 ]
[ ]
[ 0.0 0.0 1.0 ]
(%i3) determinant(M1);
(%o3) 1.0
(%i4) M3: matrix([1.0,3.0,1.0],[2.0,6.0,1.0],[0.0,0.0,1.0]);
[ 1.0 3.0 1.0 ]
[ ]
(%o4) [ 2.0 6.0 1.0 ]
[ ]
[ 0.0 0.0 1.0 ]
(%i5) determinant(M3);
(%o5) 0.0
(%i6) M4: matrix([1.0,3.0,1.0],[2.0,4.0,1.0],[0.0,0.0,0.0]);
[ 1.0 3.0 1.0 ]
[ ]
(%o6) [ 2.0 4.0 1.0 ]
[ ]
[ 0.0 0.0 0.0 ]
(%i7) determinant(M4);
(%o7) 0.0
(%i8) M2: matrix([1.0,3.0,1.0],[2.0,1.0,1.0],[0.0,2.0,1.0]);
[ 1.0 3.0 1.0 ]
[ ]
(%o8) [ 2.0 1.0 1.0 ]
[ ]
[ 0.0 2.0 1.0 ]
(%i9) determinant(M2);
(%o9) - 3.0
(%i10) M2a: matrix([1.0,3.0],[2.0,1.0]);
[ 1.0 3.0 ]
(%o10) [ ]
[ 2.0 1.0 ]
(%i11) determinant(M2a);
(%o11) - 5.0
(%i12) M2b: matrix([1.0,3.0],[0.0,2.0]);
[ 1.0 3.0 ]
(%o12) [ ]
[ 0.0 2.0 ]
(%i13) determinant(M2b);
(%o13) 2.0
(%i14) M2c: matrix([2.0,1.0],[0.0,2.0]);
[ 2.0 1.0 ]
(%o14) [ ]
[ 0.0 2.0 ]
(%i15) determinant(M2c);
(%o15) 4.0
(%i16) determinant(M2a) - determinant(M2b) + determinant(M2c);
(%o16) - 3.0
(%i17) "Aufbau des Normalenvektors"$
(%i18) "( det(M2c) , -det(M2b) , det(M2a) )^T "$
[ det(M2c) ]
[ ]
[ - det(M2b) ]
[ ]
[ det(M2a) ]
(%i19) "Normalenvektor Vektor n1"$
(%i20) n1: transpose(matrix ([4.0,-2.0,-5.0]));
[ 4.0 ]
[ ]
(%o20) [ - 2.0 ]
[ ]
[ - 5.0 ]
(%i21) "Vektor a"$
(%i22) a: transpose(matrix ([1.0,2.0,0.0]));
[ 1.0 ]
[ ]
(%o22) [ 2.0 ]
[ ]
[ 0.0 ]
(%i23) "Vektor b"$
(%i24) b: transpose(matrix ([3.0,1.0,2.0]));
[ 3.0 ]
[ ]
(%o24) [ 1.0 ]
[ ]
[ 2.0 ]
(%i25) "Skalarprodukt zwischen den Vektoren : <a,n1> = 0.0"$
(%i26) "Skalarprodukt zwischen den Vektoren : <b,n1> = 0.0"$
(%i27) "Kreuzprodukt a x b"$
(%i28) a_b : transpose(matrix ([4.0,-2.0,-5.0]));
[ 4.0 ]
[ ]
(%o28) [ - 2.0 ]
[ ]
[ - 5.0 ]